trimesh.smoothing module¶
- trimesh.smoothing.dilate_slope(vertices, faces, normals, v, eps)¶
Get de derivate of dilation scalar by the volume variation by finite differences Thus, Vertices += vertex_normals*dilate_slope*(Initial_Volume - Srinked_Volume) Parameters
- meshtrimesh.Trimesh
Input geometry
vertices: mesh.vertices faces: mesh.faces normals: array
vertices normals
- dilate_slope: float
derivative
- trimesh.smoothing.filter_humphrey(mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None)¶
Smooth a mesh in-place using laplacian smoothing and Humphrey filtering. Articles “Improved Laplacian Smoothing of Noisy Surface Meshes” J. Vollmer, R. Mencl, and H. Muller :param mesh: Mesh to be smoothed in place :type mesh: trimesh.Trimesh :param alpha: Controls shrinkage, range is 0.0 - 1.0
If 0.0, not considered If 1.0, no smoothing
- Parameters:
beta (float) – Controls how aggressive smoothing is If 0.0, no smoothing If 1.0, full aggressiveness
iterations (int) – Number of passes to run filter
laplacian_operator (None or scipy.sparse.coo.coo_matrix) – Sparse matrix laplacian operator Will be autogenerated if None
- trimesh.smoothing.filter_laplacian(mesh, lamb=0.5, iterations=10, implicit_time_integration=False, volume_constraint=True, laplacian_operator=None)¶
Smooth a mesh in-place using laplacian smoothing. Articles 1 - “Improved Laplacian Smoothing of Noisy Surface Meshes”
Vollmer, R. Mencl, and H. Muller
- 2 - “Implicit Fairing of Irregular Meshes using Diffusion
and Curvature Flow”. M. Desbrun, M. Meyer, P. Schroder, A.H.B. Caltech
- Parameters:
mesh (trimesh.Trimesh)
place (Mesh to be smoothed in)
lamb (float)
constant (Diffusion speed)
0.0 (If >)
diffusion (no)
0.0
occurs (diffusion)
implicit_time_integration (boolean)
False (if) – -lamb <= 1.0 - Stability Limit (Article 1)
True (if) – -lamb no limit (Article 2)
iterations (int)
filter (Number of passes to run)
laplacian_operator (None or scipy.sparse.coo.coo_matrix)
operator (Sparse matrix laplacian)
None (Will be autogenerated if)
- trimesh.smoothing.filter_mut_dif_laplacian(mesh, lamb=0.5, iterations=10, volume_constraint=True, laplacian_operator=None)¶
Smooth a mesh in-place using laplacian smoothing using a mutable diffusion laplacian.
- Articles
Barroqueiro, B., Andrade-Campos, A., Dias-de-Oliveira, J., and Valente, R. (January 21, 2021). “Bridging between topology optimization and additive
manufacturing via Laplacian smoothing.” ASME. J. Mech. Des.
- Parameters:
mesh (trimesh.Trimesh) – Mesh to be smoothed in place
lamb (float) – Diffusion speed constant If 0.0, no diffusion If > 0.0, diffusion occurs
iterations (int) – Number of passes to run filter
laplacian_operator (None or scipy.sparse.coo.coo_matrix) – Sparse matrix laplacian operator Will be autogenerated if None
- trimesh.smoothing.filter_taubin(mesh, lamb=0.5, nu=0.5, iterations=10, laplacian_operator=None)¶
Smooth a mesh in-place using laplacian smoothing and taubin filtering. Articles “Improved Laplacian Smoothing of Noisy Surface Meshes” J. Vollmer, R. Mencl, and H. Muller :param mesh: Mesh to be smoothed in place. :type mesh: trimesh.Trimesh :param lamb: Controls shrinkage, range is 0.0 - 1.0 :type lamb: float :param nu: Controls dilation, range is 0.0 - 1.0
Nu shall be between 0.0 < 1.0/lambda - 1.0/nu < 0.1
- Parameters:
iterations (int) – Number of passes to run the filter
laplacian_operator (None or scipy.sparse.coo.coo_matrix) – Sparse matrix laplacian operator Will be autogenerated if None
- trimesh.smoothing.get_vertices_normals(mesh)¶
Compute Vertex normals using equal weighting of neighbors faces. Parameters
- meshtrimesh.Trimesh
Input geometry
- vertices_normals: array
Vertices normals
- trimesh.smoothing.laplacian_calculation(mesh, equal_weight=True, pinned_vertices=None)¶
Calculate a sparse matrix for laplacian operations. :param mesh: Input geometry :type mesh: trimesh.Trimesh :param equal_weight: If True, all neighbors will be considered equally
If False, all neighbors will be weighted by inverse distance
- Returns:
laplacian – Laplacian operator
- Return type:
scipy.sparse.coo.coo_matrix